Template:Infobox combinatorial classes: Difference between revisions
en>IznoPublic (fail) |
m (1 revision imported) |
(No difference)
|
Latest revision as of 01:07, 18 January 2023
Script error: No such module "Uses TemplateStyles".
Usage
The Template:infobox combinatorial classes generates a right-hand side infobox, based on the specified parameters. To use this template, copy the following code in your article and fill in as appropriate:
Script error: No such module "Parameter names example".
{{Infobox combinatorial classes | name = | notation = | intro = | parameters = | nth_element = | asymptotic = | support = | OGF = | OGF radius = | EGF = | EGF radius = | PGF = | PGF radius = | LS = | LS radius = | BS = | BS radius = | DGF = | DGF radius = | PSGF = | PSGF radius = }}
Parameters
- name — Name at the top of the infobox; should be the name of the sequence, without the word sequence. (e.g. "Fibonnacci", "Factorials")
- notation — How the sequence (or its <math>n</math>-th element) is usually denoted. For example, <math>n!</math> for the sequence of factorials.
- parameters — parameters of the sequence family.
- support — Where the sequence is defined and non-zero. (e.g. it is the place to state that a sequence has only value at even position, or at prime positions.)
- nth element — The place to give the exact value of the <math>n</math>-th element of the sequence. (e.g. for fibonnaci number, it would be <math>\frac{1}{\sqrt5}\left(\left(\frac{1+\sqrt 5}{2}\right)^n+\left(\frac{1-\sqrt 5}{2}\right)^n\right)</math>)
- asymptotic — A function with the same domain than the sequence, which is asymptotically equivalent to it. (e.g. for fibonnaci number, it would be <math>\frac{1}{\sqrt5}\left(\left(\frac{1+\sqrt 5}{2}\right)^n\right)</math>)
- OGF, EGF, PGF, LS, BS, DGF, PSGF are defined as in the page Generating function
- OGF radius, EGF radius, PGF radius, LS radius, BS radius, DGF radius, PSGF radius the radius of the previously defined functions
TemplateData
TemplateData for Infobox combinatorial classes
No description.
Parameter | Description | Type | Status | |
---|---|---|---|---|
box_width | box_width | no description | Unknown | optional |
Name | name | Name at the top of the infobox; should be the name of the sequence, without the word sequence
| Unknown | optional |
notation | notation | no description | Unknown | optional |
intro | intro | no description | Unknown | optional |
parameters | parameters | no description | Unknown | optional |
support | support | Where the sequence is defined and non-zero.
| Unknown | optional |
nth element | nth element | no description | Unknown | optional |
asymptotic | asymptotic | A function with the same domain than the sequence, which is asymptotically equivalent to it.
| Unknown | optional |
OGF | OGF | The ordinary generating function of the sequence | Unknown | optional |
its radius | radius_OGF | radius of convergence of the OGF
| Number | optional |
EGF | EGF | The exponential generating function of the sequence | Unknown | optional |
radius_EGF | radius_EGF | the radius of convergence of the EGF | Unknown | optional |
PGF | PGF | The poisson generating function of the sequence | Unknown | optional |
radius_PGF | radius_PGF | the radius of convergence of the PGF | Unknown | optional |
LS | LS | The Lambert series of the sequence | Unknown | optional |
radius_LS | radius_LS | the radius of convergence of the LS | Unknown | optional |
BS | BS | The Bell series of the sequence | Unknown | optional |
radius_BS | radius_BS | the radius of convergence of the BS | Unknown | optional |
DGF | DGF | The Dirichlet series generating functions of the sequence | Unknown | optional |
radius_DGF | radius_DGF | the radius of convergence of the DGF | Unknown | optional |
PSGF | PSGF | The Polynomial Sequence Generating Function of the sequence | Unknown | optional |
radius_PSGF | radius_PSGF | the radius of convergence of the PSGF | Unknown | optional |