Template:Infobox mathematical function
File:Lua-Logo.svg | This template uses Lua: |
Script error: No such module "Parameter names example".
Blank syntax
{{Infobox mathematical function | name = | image= |imagesize= <!--(default 220px)--> |imagealt= | parity= |domain= |codomain= |range= |period= | zero= |plusinf= |minusinf= |max= |min= | vr1= |f1= |vr2= |f2= |vr3= |f3= |vr4= |f4= |vr5= |f5= | asymptote= |root= |critical= |inflection= |fixed= | notes = }}
Parameters
- Pairs VR1-f1, f1-VR2, etc. are used for labeling specific value functions. Suppose a function at the point e has a value of 2e and that this point is because of something specific. In this case you should put that as VR1 = eand f1 = 2e. For the next point is used a couple of VR2-f2, etc. If you run out of points (five currently available), ask for more.
- Variables heading1, heading2, heading3 define whether some of the headlines basic properties, specific values, etc. be displayed. If you do not want a title to be displayed, simply delete the variable from the template. Set the value of the variable to 0 or anything will not prevent the display title.
- Variables plusinf and minusinf indicate the value function at + ∞ and - ∞.
- root is the x-intercept, critical is the critical point(s), inflection is inflection point(s)
- fixed is fixed point(s)
Example
The code below produces the box opposite:
Sine | |
---|---|
File:Sine one period.svg | |
General information | |
General definition | <math>\sin(\alpha) = \frac {\textrm{opposite |
| parity=odd |domain=(−∞, +∞) a |range=[−1, 1] a |period=2π | zero=0 |plusinf= |minusinf= |max=(2kπ + π/2, 1)b |min=(2kπ − π/2, −1) | vr1= |f1= |vr5= |f5= | asymptote= |root=kπ |critical=kπ + π/2 |inflection=kπ |fixed=0
| notes =|fields_of_application= Trigonometry, Integral transform, etc. |date=Gupta period |motivation_of_creation=Indian astronomy
|reciprocal = Cosecant |inverse = Arcsine |derivative = <math>f'(x) = \cos(x) </math> |antiderivative = <math>\int f(x)\,dx = -\cos(x) + C </math> |generalized_continued_fraction = <math> \cfrac{x}{1 + \cfrac{x^2}{2\cdot3-x^2 + \cfrac{2\cdot3 x^2}{4\cdot5-x^2 + \cfrac{4\cdot5 x^2}{6\cdot7-x^2 + \ddots}}}}. </math> |taylor_series= <math> \begin{align} x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \\[8pt] & = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}x^{2n+1} \\[8pt] \end{align} </math>
|other_related= cos, tan, csc, sec, cot }}
Gamma | |
---|---|
File:Gamma plot.svg | |
General information | |
General definition | <math> \Gamma(z) = \int_0^\infty x^{z-1} e^{-x}\,dx \ </math>,<math>\qquad \Re(z) > 0\ </math> |
Deriver of General definition | Daniel Bernoulli |
Motivation of invention | Interpolation for factorial function |
Date of solution | 1720s |
Extends | Factorial function |
Fields of application | Probability, statistics, combinatorics |
Main applications | probability-distribution functions |
Domain, Codomain and Image | |
Domain | <math>\mathbb{C}</math> - ℤ0- |
Image | <math>\mathbb{C} \setminus \{0\} </math> |
Basic features | |
Parity | Not even and not odd |
Period | No |
Analytic? | Yes |
Meromorphic? | Yes |
Holomorphic? | Yes except at ℤ0- |
Specific values | |
Maxima | No |
Minima | No |
Value at ℤ+ | <math>(n-1)!</math> |
Value at ℤ0- | Not defined |
Specific features | |
Root | No |
Critical point | <math>\supseteq</math> ℤ0- |
Inflection point | <math>\supseteq</math> ℤ0- |
Fixed point | <math>\supseteq</math> 1 |
Poles | <math>\supseteq</math> ℤ0- |
Transform | |
Corresponding transform | Mellin transform |
Corresponding transform formula | <math> \Gamma(z) = \{ \mathcal M e^{-x} \} (z).</math> |
{{Infobox mathematical function | name = Sine | image = Sinus.svg | parity=odd |domain=(-∞,∞) |range=[-1,1] |period=2π | zero=0 |plusinf= |minusinf= |max=((2k+½)π,1) |min=((2k-½)π,-1) | asymptote= |root=kπ |critical=kπ-π/2 |inflection=kπ |fixed=0 | notes = Variable k is an [[integer]]. }}
Tracking category
See also
Script error: No such module "Navbox with collapsible groups".